KLiC Activity Scenario Template

TEACHER and STUDENTS NOTES

Activity title:

Gymnastics, motion analyses single bar, stride rotation forward

Subject:
Sport Didactics, Gymnastics, Physical Education Teacher Training Programme, $4^{\text {th }}$ semester of
Student age:

>19 Teacher students

Estimated duration:
$90+90$ min
Phase 1 (Stage 1 - 2): 90 min (gym/sport hall)

- 20 min : Introduction. Purpose and learning objectives are presented. Brief presentation of the software to be used (KLiC and Skill Capture). Presenting technology tools to be used (laptop, DV Cam, Accelerometers) Grouping. Roles and responsibilities are distributed. Time for questions is given.
- 10 min: warm up + pick and set up equipment
- $15 \mathrm{~min} /$ group and "station" x $4=60 \mathrm{~min}$
(Stage 3) Between phase 1 and 2 students are required to:
- Download personal video from the Skill Capture Software
- Convert it into a Quicktime file and make a 6 picture sequence (see below)
- Fill in the motion analysis chart (Se below)

Phase 2 (stage 4 - 5): 90 min (classroom with Internet access, computers, presentation tools)

- 15 min: feedback and recapturing
- 45 min: group work to conduct further data analyses and discuss and compare motion analysis chart. Make a short $1-2$ slide presentation
- 30 min group discussion and presentations of motion analyses

Science content

Sport didactics and biomechanics

The didactic questions form the basis for a critical analysis of the use of technology for measuring acceleration and video feedback

Learning objectives

1. Students should be able to perform a stride rotation forward on a single bar
2. Students should be able to conduct a motion analysis using the Skill Capture System (video recording) to explain the general concept of an ideal rotation
3. Students should be able to explain the significance of the centre of gravity forward displacement.
4. Students should be able to understand and explain the importance of acceleration between the front and rear leg in the rotation.
5. Students should be able to understand and explain acceleration of the movement is expressed in x, y and z-axis by interpreting the graphical interface of the KLIC system together with Skill Capture video recording of the movement.
6. Students should be able to show a deeper understanding of the basics of acceleration in biomechanics by formulating a research question based on acceleration and its impact on the performance of a stride rotation forward
7. The students will be able to critically define the advantages and disadvantages of the use of video feedback and the accelerometers in gymnastics

Inquiry-based character
Stage 1: Work in groups of $6-8$ students. Allocate roles and responsibilities within the group as shown below:

Roles and responsibilitie s:
4 Demo gymnasts (DG) 2 Technicians (T) 2 Coaches for spotting (C)
A. Lap top start up with KLiC System Software (T)
B. Apply the accelerometer sensors at the ankle of each foot. Note which accelerometer is placed on right and left foot. (C)
C. Check communication to the base station. (T)
D. Test 1: Execute a stride rotation forward on the

Figure 2 Student wearing accelerometer on left and right foot. Conducting stride rotation forward

Stage 2

Define the lowest common denominator in the movement that contributes to a good technique. Study the Ideal picture sequences. Study the motion analysis scheme and develop one or two appropriate hypothesis i.e.is there any difference at the start and finish in the below parameters?
i. ΔT

Stage 4

Work in groups. Make further data analyses and discuss and compare the motion scheme with KLiC Data and Video sequences.

Prepare a presentation (i.e. ppt) with embedded video.

Students could, if they whish, add the video clip to YouTube, Vimeo or other open sources.

Figure 3 Accelerometer Data. Left and right foot

Student picture sequence for analyses

Please, visit Vimeo for video demos of student works:
Group: KliC Project
Direct link: http://vimeo.com/32915599

A on-line course evaluation is available for all students with specific question concerning the systems used within this scenario.

Stage 5 Presentation
and group discussions.

Applied technology (if any)
Digital video camera

Materials needed

- Laptop with Internet Connection
- KliC system Software
- Setting: Single bar, video camera connected to the laptop (See guide at Skill Capture)

Discussion guide
Type of Learning: Inquiry based learning utilising a collaborative structure with problem solving activities. Construct of questions, data analysis, comparisons
Activity: Collaborative in group
Learning Sequence: Define, explore, discuss, explore, discuss and redefine
Establishing a common understanding- Students are organised into groups and have different roles and responsibilities in a collaborative explorative learning environment.

The experiment: See guidelines for stage 1-4

Conclusion, assessment and evaluation- Each group should present their result with following discussions where their future professional role as PE teachers should be put in forefront.

- Technology for enhanced learning and understanding
- Design discussion environment based upon the didactical key questions:
- What, When, Where, Why, How, Who and for whom?

Seven friends I have
for whom I really care
"What?" "How?" and "Why?"
"When?" "Who?" and "Where?"
Seven, aren't they supposed to be?
"Whom?" is missing out on me?

Assessment

On line course assessment for students.

STUDENT WORKSHEET

Activity title:

Motion analyses in gymnastics using single bar: movement to study: stride rotation forward

Introduction

See learning objectives above
Thinking about the question
Se notes above.

Materials needed

Laptop, DV cam, gymnastic single (high) barn
Safety
Routine safety in gymnastics. Mat under bar, Look for suitable cable connection to avoid long cables on the
floor.
Investigation
See learning outcomes

Analysis (SWOT)
Technology enhanced learning. SWOT after final presentation
Further investigation
Progression - where, when, what and how?
Assessment
Regular course assessment

